Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,4-Bis(4-aminophenoxy)butane

Touseef Naz, ${ }^{\text {a }}$ Zareen Akhter, ${ }^{\mathbf{a} *}$ Michael Bolte ${ }^{\mathbf{b}}$ and Humaira M. Siddiqi ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
Correspondence e-mail: zareenakhter@yahoo.com

Received 7 August 2007; accepted 7 August 2007

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \mathrm{~A}$; R factor $=0.036 ; w R$ factor $=0.099$; data-to-parameter ratio $=20.5$.

Molecules of the title compound, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$, reside across crystallographic centres of inversion with one half-molecule in the asymmetric unit. The bond lengths and angles are normal and the crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For related literature, see: Butt et al. (2005); Chol et al. (2001); Eastmond et al. (1996); Jung \& Park (1996); Liaw et al. (1998); Sroog (1991); Yang et al. (2000).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=272.34$
Orthorhombic, Pbca
$a=5.2638(4) \AA$
$b=13.6385(8) \AA$
$c=20.4415(11) \AA$
$V=1467.50(16) \AA^{3}$
$M_{r}=272.34$
Orthorhombic, Pbca
$b=13.6385$ (8) \AA
$c=20.4415$ (11) A
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=173$ (2) K
$0.42 \times 0.39 \times 0.27 \mathrm{~mm}$

Data collection

Stoe IPDS II two-circle diffractometer
Absorption correction: none
18475 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.099$
$S=1.04$
H atoms treated by a mixture of independent and constrained refinement
2051 reflections
100 parameters

2051 independent reflections 1847 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N}^{\mathrm{i}}$	$0.911(14)$	$2.302(14)$	$3.1895(9)$	$164.6(11)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\text {ii }}$	$0.886(14)$	$2.334(14)$	$3.1790(11)$	$159.3(11)$
Symmetry codes: (i) $x-\frac{1}{2}, y,-z+\frac{1}{2} ;$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z$				

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X - $A R E A$; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2035).

References

Butt, M. S., Akhter, Z., Zafar-uz-Zaman, M. \& Munir, A. (2005). Eur. Polym. J. 41, 1638-1646.

Chol, K. H., Lee, K. H. \& Jung, J. C. (2001). J. Polym. Sci. Part A Polym. Chem. 39, 3818-3825
Eastmond, G., Paprotny, C. \& Irwin, R. S. (1996). Macromolecules, 29, 13821388.

Jung, J. C. \& Park, S. B. (1996). J. Polym. Sci. Part A Polym. Chem. 34, 357-365.
Liaw, D. J., Liaw, B. Y. \& Jeng, M. Q. (1998). Polymer, 39, 1597-1607.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sroog, C. E. (1991). J. Prog. Polym. Sci. 16, 561-694.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Yang, C. P., Hsiao, S. H. \& Yang, H. W. (2000). Macromol. Chem. Phys. 201, 409-418.

supplementary materials

Acta Cryst. (2007). E63, o3777 [doi:10.1107/S1600536807039013]

1,4-Bis(4-aminophenoxy)butane

T. Naz, Z. Akhter, M. Bolte and H. M. Siddiqi

Comment

Aromatic polyamides are considered as one of the most important classes of polymers because they have excellent thermal, mechanical and electrical properties (Chol et al., 2001), as well as outstanding chemical resistance (Sroog, 1991). However, their applications are often limited due to poor solubility, partially due to strong interchain interactions (Butt et al., 2005). To overcome these limitations, many efforts have been made to improve the processability of the polyamides while maintaining their thermal and mechanical properties (Chol et al., 2001). For example, bulky lateral substituents (Yang et al., 2000), flexible alkyl side chains (Jung \& Park, 1996), non-coplanar biphenyl groups, and flexible alkyl or aryl ether spacers (Liaw et al., 1998) have been used to enhance solubility and thus process ability. Incorporation of flexible segments such as - $\mathrm{O}-$, $-\mathrm{SO}_{2}-,-\mathrm{CH}_{2}$ - and $-\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$-, and of bulky pendant groups such as tert-butyl and adamantyl, were found to be successful in altering crystallinity and intermolecular interactions to increase solubility (Eastmond et al., 1996). Bulky pendant groups increase the disorder in chains and hinder dense chain packing which enhance the solubility. Many efforts have been made in the design and synthesis of new diamines. The title compound (I) is the result of an attempt to prepare soluble and processable organic based aromatic polyamides and ferrocene containing polyamides.

Experimental

Synthesis of the organic diamine TN4 consists of two steps. Step-1: (N4) A mixture of 1.40 ml (0.015 mol) of 1,4-butanediol, $4.38 \mathrm{~g}(0.0318$ moles $)$ anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $5 \mathrm{~g}(0.0318$ moles $) p$-nitrochlorobenzene in 80 ml of DMF was heated at $120^{\circ} \mathrm{C}$ for 24 h under a N_{2} atmosphere. When the reaction was over the mixture was poured into 500 ml distilled water to form light yellow precipitat, which was collected by filtration and washed several times thoroughly with water. The crude product was recrystallized from ethanol. M.p. $132^{\circ} \mathrm{C}$, Yield $=80 \%$.

Step-2: A two neck flask was charged with (N4) $1 \mathrm{~g}, 10 \mathrm{~mL}$ of hydrazine monohydrate, 80 mL e thanol and 0.1 g of 5% palladium on carbon $(\mathrm{Pd}-\mathrm{C})$. The mixture was refluxed for 24 h and then filtered to remove the $(\mathrm{Pd}-\mathrm{C})$. The filtrate was concentrated on rotary evaporator to remove the solvent (ethanol). The white colored precipitates were then recrystallized from ethanol. m.p. $=134^{\circ} \mathrm{C}$, yield 70%.

Refinement

H atoms were found in a difference map, but those bonded to C were refined using a riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})[\mathrm{C}-\mathrm{H}=0.99 \AA$ for the methylene groups $]$. The H atoms bonded to N were freely refined.

supplementary materials

Figures

Fig. 1. Perspective view of the title compound (I) with the atom numbering; displacement ellipsoids are at the 50% probability level. Symmetry operator (A): $-x+1,-y+2,-z$.

Fig. 2. Packing diagram of the title compound (I) with a view onto the $b c$ plane. Hydrogen bonds are drawn as dashed lines.

1,4-Bis(4-aminophenoxy)butane

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=272.34$
Orthorhombic, $P b c a$
Hall symbol: -P 2ac 2ab
$a=5.2638$ (4) \AA
$b=13.6385$ (8) \AA
$c=20.4415(11) \AA$
$V=1467.50(16) \AA^{3}$
$Z=4$
$F_{000}=584$
$D_{\mathrm{x}}=1.233 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 407 K
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 18762 reflections
$\theta=3.6-29.7^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.42 \times 0.39 \times 0.27 \mathrm{~mm}$

Data collection

Stoe IPDS II two-circle
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173(2) \mathrm{K}$
ω scans
Absorption correction: none
18475 measured reflections
1847 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=29.6^{\circ}$
$\theta_{\text {min }}=3.6^{\circ}$
$h=-7 \rightarrow 7$
$k=-18 \rightarrow 18$
$l=-28 \rightarrow 28$

2051 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.099$
$S=1.04$
2051 reflections
100 parameters

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0511 P)^{2}+0.3016 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.17$ e \AA^{-3}
Extinction correction: SHELXL97,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.024 (3)

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
N1	$0.04075(16)$	$0.52438(6)$	$0.20593(4)$	$0.03056(18)$
H1A	$-0.118(3)$	$0.5273(9)$	$0.2238(6)$	$0.041(3)^{*}$
H1B	$0.057(3)$	$0.4711(10)$	$0.1814(7)$	$0.042(3)^{*}$
O1	$0.36952(14)$	$0.87454(5)$	$0.08907(3)$	$0.03265(18)$
C1	$0.11977(16)$	$0.61127(6)$	$0.17419(4)$	$0.02505(18)$
C2	$0.33000(17)$	$0.61024(6)$	$0.13248(4)$	$0.02799(19)$
H2	0.4146	0.5500	0.1242	0.034^{*}
C3	$0.41864(17)$	$0.69611(6)$	$0.10265(4)$	$0.02789(19)$
H3	0.5601	0.6937	0.0738	0.033^{*}
C4	$0.29826(16)$	$0.78512(6)$	$0.11548(4)$	$0.02537(18)$
C5	$0.09139(17)$	$0.78744(6)$	$0.15830(4)$	$0.02801(19)$
H5	0.0111	0.8481	0.1679	0.034^{*}
C6	$0.00208(16)$	$0.70152(6)$	$0.18700(4)$	$0.02793(19)$
H6	-0.1401	0.7040	0.2156	0.034^{*}
C7	$0.57284(18)$	$0.87461(6)$	$0.04201(4)$	$0.0301(2)$

H7A	0.5284	0.8327	0.0042	0.036^{*}
H7B	0.7305	0.8489	0.0621	0.036^{*}
C8	$0.61124(16)$	$0.98013(6)$	$0.01998(4)$	$0.02869(19)$
H8A	0.7679	0.9841	-0.0067	0.034^{*}
H8B	0.6355	1.0221	0.0590	0.034^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0364(4)$	$0.0263(4)$	$0.0290(4)$	$-0.0052(3)$	$0.0038(3)$	$0.0005(3)$
O1	$0.0411(4)$	$0.0251(3)$	$0.0318(3)$	$-0.0013(2)$	$0.0120(3)$	$0.0033(2)$
C 1	$0.0284(4)$	$0.0263(4)$	$0.0205(3)$	$-0.0045(3)$	$-0.0032(3)$	$0.0002(3)$
C 2	$0.0311(4)$	$0.0252(4)$	$0.0278(4)$	$0.0007(3)$	$0.0011(3)$	$-0.0013(3)$
C 3	$0.0291(4)$	$0.0278(4)$	$0.0268(4)$	$-0.0006(3)$	$0.0043(3)$	$-0.0006(3)$
C 4	$0.0292(4)$	$0.0242(4)$	$0.0227(4)$	$-0.0025(3)$	$-0.0006(3)$	$0.0011(3)$
C 5	$0.0304(4)$	$0.0270(4)$	$0.0266(4)$	$0.0028(3)$	$0.0024(3)$	$0.0009(3)$
C6	$0.0269(4)$	$0.0314(4)$	$0.0254(4)$	$-0.0006(3)$	$0.0030(3)$	$0.0015(3)$
C7	$0.0312(4)$	$0.0303(4)$	$0.0288(4)$	$-0.0011(3)$	$0.0047(3)$	$0.0033(3)$
C8	$0.0282(4)$	$0.0312(4)$	$0.0266(4)$	$-0.0064(3)$	$0.0000(3)$	$0.0032(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 1$	$1.4136(11)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$0.911(14)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$0.886(14)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.3855(10)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.4389(10)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3971(12)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.4026(12)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.4003(12)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.3942(12)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$114.6(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$113.5(8)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$110.7(12)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 7$	$117.55(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$118.20(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$120.32(8)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$121.33(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.42(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.66(8)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.2
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$124.76(8)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$115.79(7)$

$\mathrm{C} 4-\mathrm{C} 5$	1.3975
$\mathrm{C} 5-\mathrm{C} 6$	$12)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500
C6-H6	0.9500
C7-C8	1.5214 (12)
C7-H7A	0.9900
C7-H7B	0.9900
C8-C8	1.5273 (17)
C8-H8A	0.9900
C8-H8B	0.9900
C6-C5-H5	119.7
C4-C5-H5	119.7
C5-C6-C1	$120.72(8)$
C5-C6-H6	119.6
C1-C6-H6	119.6
O1-C7-C8	$107.30(7)$
O1-C7-H7A	110.3
C8-C7-H7A	110.3
O1-C7-H7B	110.3
C8-C7-H7B	110.3
H7A-C7-H7B	108.5
C7-C8-C8	$113.08(9)$
C7-C8-H8A	109.0
C8-C8-H8A	109.0
C7-C8-H8B	109.0

sup-4

supplementary materials

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.45(7)$	$\mathrm{C} 8-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.0
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.52(8)$	$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	107.8
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-1.61(12)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.24(8)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-177.24(8)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1.34(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.11(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.83(13)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$3.89(12)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.64(12)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$-176.71(7)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$176.22(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$179.75(8)$	$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$179.14(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.38(13)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	$-68.00(11)$

Symmetry codes: (i) $-x+1,-y+2,-z$.

Hydrogen-bond geometry ($A,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.911(14)$	$2.302(14)$	$3.1895(9)$	$164.6(11)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{iii}}$	$0.886(14)$	$2.334(14)$	$3.1790(11)$	$159.3(11)$

Symmetry codes: (ii) $x-1 / 2, y,-z+1 / 2$; (iii) $-x+1 / 2, y-1 / 2, z$.
supplementary materials

Fig. 1

Fig. 2

